7. service

chemicals table...material data...online-tools...forms...addresses...

plastics
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromine (aqueous), 25%</td>
<td>+ + +</td>
</tr>
<tr>
<td>Brandy vinegar</td>
<td>+ + +</td>
</tr>
<tr>
<td>Boric acid (aqueous), 10%</td>
<td>+ + +</td>
</tr>
<tr>
<td>Bleaching solution (aqueous), 10%</td>
<td>+ + +</td>
</tr>
<tr>
<td>Bitumen, DIN 51567</td>
<td>+ +</td>
</tr>
<tr>
<td>Bleaching solution, 10%</td>
<td>+ +</td>
</tr>
<tr>
<td>Blue vitriol, saturated solution</td>
<td>+ +</td>
</tr>
<tr>
<td>Blue vitriol, 0,5%</td>
<td>+ +</td>
</tr>
<tr>
<td>Boric acid (aqueous), 10%</td>
<td>+ + +</td>
</tr>
<tr>
<td>Bromine (aqueous), 25%</td>
<td>+ + +</td>
</tr>
<tr>
<td>Bromine vapours</td>
<td>+ + +</td>
</tr>
<tr>
<td>Butanol</td>
<td>+ + +</td>
</tr>
</tbody>
</table>
Chemical Resistance

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylacetate</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylglycol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylglycolat</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyl phthalate</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyric acid</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Calcium chloride, sat’d solution</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium hydroxide (aqueous)</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Calcium hypochlorite</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camphor</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carbon dioxide gas</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carbonated ammonia (aqueous), 10%</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carbon disulphide</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Caproin (aqueous), 6%</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>X</td>
<td>X</td>
<td>−</td>
<td>O</td>
<td>O</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Caustic natrium (aqueous), 50%</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Caustic potash, 10%</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Caustic potash, 20%</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>O</td>
<td>−</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Caustic potash, 40%</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Caustic potash, 50%</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>X</td>
<td>O</td>
<td>−</td>
<td>O</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Caustic soda (aqueous), 10%</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>O</td>
<td>+</td>
<td>−</td>
<td>O</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Caustic soda (aqueous), 50%</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Cellulose paint</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chlor, chlorine water</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chloramine</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chlorobromine methane, 98%</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>−</td>
<td>O</td>
<td>−</td>
</tr>
<tr>
<td>Chlorothanol</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chloric acid</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chlorine hydrogen gas</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chlorine sulfone acid (aqueous)</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>O</td>
<td>−</td>
<td>−</td>
<td>O</td>
<td>O</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chlorine water, sat’d solution</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chloroacetic acid (aq.), 10%</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chloroform</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chromic acid (aqueous), 1%</td>
<td>0</td>
<td>−</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Chromic acid (aqueous), 10%</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Citric acid, concentrate dilution</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>−</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Citric acid (aqueous), 10%</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citrus fruits</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cobalt salt (aqueous)</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cooking fats, 100%</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cooking oils</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cresol</td>
<td>−</td>
<td>−</td>
<td>X</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>O</td>
<td>O</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Cylohexane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>
Chemical Resistance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decahydranaphthalene</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Dibutyl ether</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dibutyl phthalate</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dichlor benzene</td>
<td>-</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Dichlor ethene</td>
<td>-</td>
<td>X</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Dichlor ethylene</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dibutyl phthalate</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dioxane</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Dioxane gas, +23°C,</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Ethanol (aqueous)</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Ethanol (aqueous), 96%</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ethylene</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Ethylene chloride</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Ethylene diamine</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ethylene glycol (aqueous), 95%</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>+</td>
</tr>
<tr>
<td>Ethylene oxide (1,2-Epoxy ethane)</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>X</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Fat, cooking fat</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ferric chloride, saturated solution</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Ferric chloride, 2,5%</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>+</td>
</tr>
<tr>
<td>Ferric chloride, 5%</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Ferric chloride, neutral, 10%</td>
<td>-</td>
<td>O</td>
<td>+</td>
<td>1</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Ferric chloride, neutral, 10%</td>
<td>+</td>
<td>-</td>
<td>X</td>
<td>+</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Fluorine</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Fluorinated hydrocarbons</td>
<td>O</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Formaldehyde (aqueous), 30%</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Formamide</td>
<td>+</td>
<td>O</td>
<td>-</td>
<td>+</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Formic acid (aqueous), 2%</td>
<td>O</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Formic acid, 10%</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Formic acid, 90%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fruit juices</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Furfural</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Glycerine</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Glycol</td>
<td>+</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Heptane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>+</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>

® cage, xirodur® cage,* cage,* cage,
Chemical Resistance

<table>
<thead>
<tr>
<th>Chemicals, iglidur®</th>
<th>A180, J200, B180</th>
<th>A200, G, GLW, M250, W3000</th>
<th>A350, X, X4, L2500</th>
<th>A500, F, J3, J4</th>
<th>A500, UW500, xigumid G</th>
<th>H2, P210, H370, H4</th>
<th>L100, PEP xigur®</th>
<th>xigur® Ball Bearings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexamethylphosphoric triamide</td>
<td>+</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hexane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Humic acid</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Hydrobromic acid (aqueous), 10%</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Hydrochloric acid, 2%</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Hydrofluoric acid (aqueous), 4%</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrogen peroxide, 0.5%</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrogen peroxide, 30%</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrogen sulphide (aqueous)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td>Hydrogen sulphide (dry)</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hydroquinone (aqueous), 5%</td>
<td>0</td>
<td>-</td>
<td>X</td>
<td>+</td>
<td>-</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Indian ink</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ink, dye, Color</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>Iodine tincture, 3%</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Isopropyl ether</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kaseh</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ketone (aliphatic)</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>"Königsberger" HCl/HNO, (75/50 vol.)</td>
<td>0</td>
<td>+</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>O</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Lead acetate (diluted), 10%</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lead stearate</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td>Linseed oil</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lithium bromide/chloride/salts (aqueous), 50%</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Lithium chloride in alcohol, 20%</td>
<td>+</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lubricating oil, mineral</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Lubricating oil, synthetic</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Magnesium chloride (aq.), 10%</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td>Magnesium hydroxyde (aqueous)</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td>Maleic acid, concentrate solution</td>
<td>0</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Maleic acid (aqueous), 10%</td>
<td>-</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Malt</td>
<td>+</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Manganese sulphat (aq.), 10%</td>
<td>+</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mercurochloride, 6%</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mercury</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td>Methane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Methanol</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Methanol, +20% CaCl₂ or LiCl</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>-</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>

igus® GmbH Germany | Phone +49 2203 9649-145 | Fax -334 | info@igus.de | www.igus.eu
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl acetate</td>
<td>o</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Methylamine</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>o</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>Milk</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Milk (lactic acid), 10%</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>Milk (lactic acid), 90%</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Molasses</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Molykote lubricating grease</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Mortar, cement, chalk</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>o</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>o</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Naphthalene sulfone acid</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Natrium oleate</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Natrium sulphate, 10%</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Natrium sulphite, neutral, 2%</td>
<td>o</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>o</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Natrium thiosulphate, 10%</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nickel salt (aqueous), 10%</td>
<td>+</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nitric acid (aqueous), 50%</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nitric acid (aqueous), 2%</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nitro gases</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Nitromethane</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nitro paints, danger class A I</td>
<td>+</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Nitro paints, danger class A II</td>
<td>+</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Nitrotoluene</td>
<td>o</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>Nitrous gases (dry)</td>
<td>-</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Noble gases (argon, helium, neon)</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Octane</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oleic acid</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oleum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Oxalic acid (aqueous), 10%</td>
<td>x</td>
<td>o</td>
<td>+</td>
<td>o</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ozone</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Paraffin</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Paraffin oil</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pebble hydrofluoric acid (aqueous), 30%</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Perchloroethene</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
</tr>
<tr>
<td>Perchloric acid, 10%</td>
<td>-</td>
<td>+</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>o</td>
</tr>
<tr>
<td>Perfume</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Chemical Resistance

Chemicals, iglidur®

<table>
<thead>
<tr>
<th>Chemicals, iglidur®</th>
<th>A180, A200, A350, A500, J200, J30, J50, J180, J280, J350, C, L100, igumid G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol (alcoholic), 70%</td>
<td>-</td>
</tr>
<tr>
<td>Phenol (aqueous), 6%</td>
<td>-</td>
</tr>
<tr>
<td>Phenol (aqueous), 70%</td>
<td>-</td>
</tr>
<tr>
<td>Phenol (aqueous), 88%</td>
<td>+</td>
</tr>
<tr>
<td>Potassium bromide (aq.), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Potassium carbonate (aq.), 60%</td>
<td>+</td>
</tr>
<tr>
<td>Potassium chloride (aq.), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Potassium dichromate (aq.), 5%</td>
<td>+</td>
</tr>
<tr>
<td>Potassium nitrate (aq.), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Potassium permanganate (aqueous), 1%</td>
<td>+</td>
</tr>
<tr>
<td>Potassium sulphate, salt’d solution</td>
<td>+</td>
</tr>
<tr>
<td>Propane, Propene</td>
<td>+</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>0</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>0</td>
</tr>
<tr>
<td>Propylene</td>
<td>+</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>0</td>
</tr>
<tr>
<td>Pyridine</td>
<td>0</td>
</tr>
<tr>
<td>Pyruvic acid (aqueous), 10%</td>
<td>X</td>
</tr>
<tr>
<td>Resorcin (1,3-Dihydroxybenzol), 50%</td>
<td>X</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td>-</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>+</td>
</tr>
<tr>
<td>Silicon oil</td>
<td>+</td>
</tr>
<tr>
<td>Silver nitrate</td>
<td>+</td>
</tr>
<tr>
<td>Smalt solutions</td>
<td>+</td>
</tr>
<tr>
<td>Soda solution, 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium acetate (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium bisulphite (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium bromide (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium carbonate (aqueous), 5%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium carbonate (aqueous), 21,5%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium carbonate (aqueous), 50%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium chloride (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium chloride, salt’d solution</td>
<td>+</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Sodium dichromate (aqueous), 10%</td>
<td>X</td>
</tr>
<tr>
<td>Sodium dodecybenzolsulphonat</td>
<td>+</td>
</tr>
<tr>
<td>Sodium hypochlorite (aqueous), 10%</td>
<td>–</td>
</tr>
<tr>
<td>Sodium hypophosphite (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium nitrate (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium nitritetriacetate (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Sodium salts, 10%</td>
<td>+</td>
</tr>
<tr>
<td>Solvent fluid</td>
<td>–</td>
</tr>
<tr>
<td>Spirit, white</td>
<td>+</td>
</tr>
<tr>
<td>Steam</td>
<td>X</td>
</tr>
<tr>
<td>Styrene</td>
<td>O</td>
</tr>
<tr>
<td>Sulphur</td>
<td>+</td>
</tr>
<tr>
<td>Sulphur acid, 2%</td>
<td>–</td>
</tr>
<tr>
<td>Sulphur acid, 10%</td>
<td>–</td>
</tr>
<tr>
<td>Sulphuric acid (concentrate), 98%</td>
<td>–</td>
</tr>
<tr>
<td>Tar</td>
<td>+</td>
</tr>
<tr>
<td>Tetrahydrofuran (solvent)</td>
<td>O</td>
</tr>
<tr>
<td>Tetrane</td>
<td>+</td>
</tr>
<tr>
<td>Thionyl chloride</td>
<td>O</td>
</tr>
<tr>
<td>Toluen</td>
<td>O</td>
</tr>
<tr>
<td>Transformer oil</td>
<td>+</td>
</tr>
<tr>
<td>Trichloroacetic acid (aq.), 50%</td>
<td>–</td>
</tr>
<tr>
<td>Trichloeoethanoic</td>
<td>+</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>–</td>
</tr>
<tr>
<td>Triethanolamine, 90%</td>
<td>+</td>
</tr>
<tr>
<td>Trisodium phosphate, 90%</td>
<td>+</td>
</tr>
<tr>
<td>Uranium fluoride</td>
<td>–</td>
</tr>
<tr>
<td>Urea</td>
<td>+</td>
</tr>
<tr>
<td>Uric acid (aqueous), 10%</td>
<td>+</td>
</tr>
<tr>
<td>Urine</td>
<td>+</td>
</tr>
<tr>
<td>Vaseline</td>
<td>O</td>
</tr>
<tr>
<td>Violet oil</td>
<td>+</td>
</tr>
<tr>
<td>“Washing machine cleaner” (phosphoric and nitric acid)</td>
<td>+</td>
</tr>
<tr>
<td>Water glasses (Sodium silicate)</td>
<td>+</td>
</tr>
<tr>
<td>Wax, molten</td>
<td>+</td>
</tr>
<tr>
<td>Wine acid</td>
<td>O</td>
</tr>
</tbody>
</table>
Chemical Resistance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylene</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Zinc chloride (aqueous), 10%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zinc sulphate (aqueous), 10%</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Resistance classification: + resistant; o conditionally resistant; – not resistant; x no data available

1 The bearings are not chemically attacked by these substances. However, there may be a dimensional change due to moisture absorption.

The data was determined using laboratory specimens or based on comparisons with similar chemicals. Therefore, this data can only act as a reference. The chemical resistance of actual parts should be tested under application conditions. All data given concerns the chemical resistance at room temperature. Other temperatures may lead to different classifications of the chemical resistance. The data is based on our current knowledge. Future discoveries may lead to changes in the classification of the chemical resistance.
iglidur® J4 | Technical Data

<table>
<thead>
<tr>
<th>Material properties table</th>
<th>Unit</th>
<th>iglidur® J4</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>General properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>grey</td>
<td></td>
</tr>
<tr>
<td>Max. moisture absorption at +23 °C/50 % r.h.</td>
<td>% weight</td>
<td>0.3</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Max. water absorption</td>
<td>% weight</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Coefficient of sliding friction, dynamic against steel</td>
<td>µ</td>
<td>0.06–0.20</td>
<td></td>
</tr>
<tr>
<td>pv value, max. (dry)</td>
<td>MPa · m/s</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>MPa</td>
<td>2,350</td>
<td>DIN 53457</td>
</tr>
<tr>
<td>Tensile strength at +20 °C</td>
<td>MPa</td>
<td>70</td>
<td>DIN 53452</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>MPa</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Max. recommended surface pressure (+20 °C)</td>
<td>MPa</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Shore D hardness</td>
<td></td>
<td>74</td>
<td>DIN 53505</td>
</tr>
<tr>
<td>Physical and thermal properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. long term application temperature</td>
<td>°C</td>
<td>+90</td>
<td></td>
</tr>
<tr>
<td>Max. short term application temperature</td>
<td>°C</td>
<td>+120</td>
<td></td>
</tr>
<tr>
<td>Min. short term application temperature</td>
<td>°C</td>
<td>–50</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>W/m · K</td>
<td>0.25</td>
<td>ASTM C 177</td>
</tr>
<tr>
<td>Coefficient of thermal expansion (at +23 °C)</td>
<td>K⁻¹ · 10⁻⁶</td>
<td>10</td>
<td>DIN 53752</td>
</tr>
<tr>
<td>Electrical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific volume resistance</td>
<td>Ωcm</td>
<td>> 10¹³</td>
<td>DIN IEC 93</td>
</tr>
<tr>
<td>Surface resistance</td>
<td>Ω</td>
<td>> 10¹²</td>
<td>DIN 53482</td>
</tr>
</tbody>
</table>

iglidur® P210 | Technical Data

<table>
<thead>
<tr>
<th>Material properties table</th>
<th>Unit</th>
<th>iglidur® P210</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>General properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td>Max. moisture absorption at +23 °C/50 % r.h.</td>
<td>% weight</td>
<td>0.3</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Max. water absorption</td>
<td>% weight</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>MPa</td>
<td>2,200</td>
<td>DIN 53457</td>
</tr>
<tr>
<td>Tensile strength at +20 °C</td>
<td>MPa</td>
<td>70</td>
<td>DIN 53452</td>
</tr>
<tr>
<td>Shore D hardness</td>
<td></td>
<td>75</td>
<td>DIN 53505</td>
</tr>
<tr>
<td>Physical and thermal properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. long term application temperature</td>
<td>°C</td>
<td>+100</td>
<td></td>
</tr>
<tr>
<td>Max. short term application temperature</td>
<td>°C</td>
<td>+160</td>
<td></td>
</tr>
<tr>
<td>Min. short term application temperature</td>
<td>°C</td>
<td>–40</td>
<td></td>
</tr>
<tr>
<td>Electrical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface resistance</td>
<td>Ω</td>
<td>> 10¹¹</td>
<td>DIN 53482</td>
</tr>
</tbody>
</table>
igumid G | Technical Data

<table>
<thead>
<tr>
<th>Material properties table</th>
<th>Unit</th>
<th>igumid G</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>General properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. moisture absorption at +23 °C/50 % r.h.</td>
<td>% weight</td>
<td>1.4</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Max. water absorption</td>
<td>% weight</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>MPa</td>
<td>7,800</td>
<td>DIN 53457</td>
</tr>
<tr>
<td>Tensile strength at +20 °C</td>
<td>MPa</td>
<td>240</td>
<td>DIN 53452</td>
</tr>
<tr>
<td>Shore D hardness</td>
<td></td>
<td>79</td>
<td>DIN 53505</td>
</tr>
<tr>
<td>Physical and thermal properties</td>
<td>°C</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Max. long term application temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. short term application temperature</td>
<td>°C</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Min. short term application temperature</td>
<td>°C</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>Electrical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific volume resistance</td>
<td>Ωcm</td>
<td>> 10¹¹</td>
<td>DIN IEC 93</td>
</tr>
<tr>
<td>Surface resistance</td>
<td>Ω</td>
<td>> 10¹⁴</td>
<td>DIN 53482</td>
</tr>
</tbody>
</table>

iguton G | Technical Data

<table>
<thead>
<tr>
<th>Material properties table</th>
<th>Unit</th>
<th>iguton G</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>General properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. moisture absorption at +23 °C/50 % r.h.</td>
<td>% weight</td>
<td>0.1</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Max. water absorption</td>
<td>% weight</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>MPa</td>
<td>10,200</td>
<td>DIN 53457</td>
</tr>
<tr>
<td>Tensile strength at +20 °C</td>
<td>MPa</td>
<td>140</td>
<td>DIN 53452</td>
</tr>
<tr>
<td>Max. recommended surface pressure (+20 °C)</td>
<td>MPa</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Shore D hardness</td>
<td></td>
<td>85</td>
<td>DIN 53505</td>
</tr>
<tr>
<td>Physical and thermal properties</td>
<td>°C</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Max. long term application temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. short term application temperature</td>
<td>°C</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Min. short term application temperature</td>
<td>°C</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>Electrical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific volume resistance</td>
<td>Ωcm</td>
<td>> 10¹⁵</td>
<td>DIN IEC 93</td>
</tr>
<tr>
<td>Surface resistance</td>
<td>Ω</td>
<td>> 10¹⁴</td>
<td>DIN 53482</td>
</tr>
</tbody>
</table>
Material properties table

General properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>POM black</th>
<th>RN33</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1.41</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. moisture absorption at +23 °C/50% r.h.</td>
<td>% weight</td>
<td>0.2</td>
<td>1.4</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Max. water absorption</td>
<td>% weight</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>POM black</th>
<th>RN33</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus of elasticity</td>
<td>MPa</td>
<td>1,900</td>
<td>3,200</td>
<td>DIN 53457</td>
</tr>
<tr>
<td>Tensile strength at +20 °C</td>
<td>MPa</td>
<td>68</td>
<td>80</td>
<td>DIN 53452</td>
</tr>
<tr>
<td>Max. recommended surface pressure (+20 °C)</td>
<td>MPa</td>
<td>23</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Shore D hardness</td>
<td></td>
<td>78</td>
<td>77</td>
<td>DIN 53505</td>
</tr>
</tbody>
</table>

Physical and thermal properties

<table>
<thead>
<tr>
<th>Property</th>
<th>°C</th>
<th>POM black</th>
<th>RN33</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. long term application temperature</td>
<td></td>
<td>+90</td>
<td>+90</td>
<td></td>
</tr>
<tr>
<td>Max. short term application temperature</td>
<td></td>
<td>+120</td>
<td>+120</td>
<td></td>
</tr>
<tr>
<td>Min. short term application temperature</td>
<td></td>
<td>+50</td>
<td>+50</td>
<td></td>
</tr>
</tbody>
</table>

Electrical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Ω cm</th>
<th>POM black</th>
<th>RN33</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific volume resistance</td>
<td></td>
<td>> 10¹²</td>
<td></td>
<td>DIN IEC 93</td>
</tr>
<tr>
<td>Surface resistance</td>
<td></td>
<td>> 10¹²</td>
<td></td>
<td>DIN 53482</td>
</tr>
</tbody>
</table>
iglidur® L100 | Technical Data

Material properties table

<table>
<thead>
<tr>
<th>General properties</th>
<th>Unit</th>
<th>iglidur® L100</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. moisture absorption at +23 °C/50 % r.h.</td>
<td>% weight</td>
<td>0.7</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Max. water absorption</td>
<td>% weight</td>
<td>5.2</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical properties

Modulus of elasticity	MPa	5,500	DIN 53457
Tensile strength at +20 °C	MPa	150	DIN 53452
Max. recommended surface pressure (+20 °C)	MPa	70	
Shore D hardness		79	DIN 53505

Physical and thermal properties

- Max. long term application temperature: °C +100
- Max. short term application temperature: °C +190
- Min. short term application temperature: °C –40

Electrical properties

| Specific volume resistance | Ω·cm | > 10¹³ | DIN IEC 93 |
| Surface resistance | Ω | > 10¹¹ | DIN 53482 |

RN246 + RN248 | Technical Data

Material properties table

<table>
<thead>
<tr>
<th>General properties</th>
<th>Einheit</th>
<th>RN246</th>
<th>RN248</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1,49</td>
<td>1,25</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>blue</td>
<td>black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. moisture absorption at +23 °C/50 % r.h.</td>
<td>% weight</td>
<td>2,0</td>
<td>1,4</td>
<td>DIN 53495</td>
</tr>
<tr>
<td>Max. water absorption</td>
<td>% weight</td>
<td>6,0</td>
<td>7,6</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical properties

Modulus of elasticity	MPa	6,000	2,700	DIN 53457
Tensile strength at +20 °C	MPa	180	99	DIN 53452
Max. recommended surface pressure (+20 °C)	MPa	65	50	
Shore D hardness		85	–	DIN 53505

Physical and thermal properties

- Max. long term application temperature: °C +80 +90
- Max. short term application temperature: °C +120 +180
- Min. short term application temperature: °C –40 –40

Electrical properties

| Specific volume resistance | Ω·cm | > 10¹¹ | > 10³ | DIN IEC 93 |
| Surface resistance | Ω | > 10¹¹ | > 10⁹ | DIN 53482 |
All catalogs and brochures can be downloaded for free
www.igus.eu/downloads

Printmedia CATALOGS:

e-chains® and e-chainsystems®
The standard tool for e-chainsystems® with 1,380 pages
- many products available from stock
- new layout in several chapters
- improved overview, legibility and order facilities
- detailed product information
- numerous links to online tools and configurators

chainflex® special cables
The standard tool for chainflex® cables with 576 pages
- 950 cable types available from stock
- improved overview, legibility and order facilities
- detailed product information and several tricks
- numerous links to online tools and configurators
- no minimum order quantity
- no cutting costs

The WebGuide is the first technical paper catalog, which is prepared
as a quick selection guide and by choosing the desired product direct
linked to the internet.
- clear and easy to use
- combines the advantages of the paper catalogue with the varied
 ones possibilities of the Internet
- price information for almost all products
- get inspired: the QR code shows you some application solutions
- the catalog Quicklinks in orange (www.igus.eu/web/...) will lead
 you directly to the product online, where you can configure,
 compare, generate 3D data and much more
- quick overview and easy comparison of all igus® products
- practical DIN-A5 size with nearly all igus® products
Printmedia BROCHURES:
- several industry sectors
- product information
- assembly instructions
- news ... and much more
Do you need help choosing an iglidur® polymer plain bearing? Then this handy product finder will help you!
First, determine the requirements for the bearing ①. Then enter the surface pressure and the relevant temperature parameter ②. The results are displayed according to suitability at the bottom ③.

► www.igus.eu/eu/iglidurquick

Calculate the service life of your desired maintenance- free iglidur® plain bearing online.
Select the measuring unit and the bearing type ①. Select the required dimensions ② or enter the part number. Please enter the relevant information page for page ③. You will find instructions at the bottom of each page ④. The results are specified as service life in hours ⑤.

► www.igus.eu/eu/iglidurlife
iglidur® materials as semi-finished products for free designing. This material finder helps you find the right iglidur® material for your project with a few clicks!

Select the requirements for the bearing ①, and then enter the surface pressure and the temperature parameter ②. The results are displayed below in conjunction with your selection ③.

► www.igus.eu/eu/quickbearingcustom

Quick calculation of the service life of your iglidur® semi-finished product.
In the first step, enter the product details ① and then enter page for page the details relevant for your application of the iglidur® material ②. In no time you will be given the service life of your product under the operating conditions you have specified. The results are displayed as service life in hours ③.

► www.igus.eu/eu/iglidurlifesemi
Find spherical bearings

QuickBearing

The igubal® product finder helps you to quickly find the right bearing. Choose from a wide range, the bearing type 1, the measuring unit and the right thread 2. Enter the temperature and the maximum tilt angle 3, and also the diameter of the inner bearing 4, and any other requirements. The results are shown below 5.

► www.igus.eu/eu/iglidurquick

Calculate the spherical bearings lifetime

QuickLife

You only need to specify a few details regarding the use of your igubal® bearings, and then the life of the product will be determined. Choose from the available options 1 the product of your choice, the load, product option 2, and the operating conditions. Then enter the operating temperature 3 and forces, followed by the daily duration of use and the proportion of operation 4. The calculation is performed by a mouse click 5 – the results are shown below on the page.

► www.igus.eu/eu/iguballife
Do you want a service life prediction for your application? With our xiros® online tool you can specifically select your installation size. This ensures that you get the appropriate bearing for your application.

Select the installation size 1 and the maximum input speed, the maximum radial load and operating temperature 2 and the maximum axial load (if any). You will receive a selection of material combinations 3. The service life 4, more details and the price 5 will be shown below.

► www.igus.eu/eu/xiroslife
Quickly configure your required bearing and determine its price. Select the required and important information about your bearing type and select the material of the bearing. Send us the 3D file per Email and you will receive a quotation for your customized product. We will contact you shortly.

▶ www.igus.eu/eu/speedigus
The configuration of your drylin® W rails and the carriage could not be easier – with this online tool it is done within a few seconds! Simply select the appropriate parameters from the drop-down menus, for example, the shaft diameter ① and the length of the complete carriage ②. As a result, the price and your order number are displayed ③. The configuration can be inquired or ordered quickly.

▶ www.igus.eu/eu/quicklinw
Aren’t you sure which drylin® product is right for you? With a few clicks, you can specify the requirements for your drylin® application and immediately receive a selection that suits your needs best. Select the application 1 and use the regulator to select load, feed rate 2, stroke length, temperature, precision class 3, dead weight and stressing capacity. Select by clicking on the boxes other desired performance features and requirements 4. The results are shown below 5 and be compared 6.

- www.igus.eu/eu/quicklin
Easily calculate the service life of your desired linear guide and configure with a few clicks. Select a drylin® system ① and add the relevant environmental parameters ②. Then select the bearing size, carriages, number and position. Then enter the distance between the rails and the mounting.

By clicking and dragging the colored crosshair ③, define the coordinates for the drive point and center of gravity or enter them via the keyboard ④. Define weight, acceleration ⑤ and distance of the bearing and select a rail length. The results are shown ⑥.

► www.igus.eu/eu/drylinlife
This online tool allows you to configure your drylin® system. You also have the option to download a 3D file of this system.

First, select the required system type ① and enter the part number (if known) ②. Then select the number of rails for your system, followed by the type of drive ③ and the number of carriages per rail. The next step is to determine the installation locations of the rails in your drylin® system ④. In the last configuration step, determine the rail length ⑤. Then you can download a 2D or 3D-CAD file ⑥.

► www.igus.eu/eu/quickcaddrylin
From stock

Delivery times display*

To simplify the ordering process – or for order tracking – every listed item on the igus® website are marked in green, yellow or gray 1 to show the delivery time of this article. A box with a green check mark 2 means that the item has a delivery time of 24 – 48 hours. A box with a yellow check mark means that the item has a delivery time of 2 – 5 working days. A box with a gray check mark means “delivery time on request” – usually 2 – 6 weeks.

Order boxes & prices*

How to find additional services and online-tools.

Order fields are located next to the igus® product details 1. They also offer you a quick and easy access to other useful online tools 2, which will help you further with this particular product. They indicate the respective costs 3 and delivery times 4 and allow you to enter the desired quantity for the purpose of inquiry or ordering 5.

* Not available for all countries.
All igus® product catalogs and brochures can be found in the igus® download section. Here, be inspired by many application examples, assembly instructions and movies.
<table>
<thead>
<tr>
<th>Date:</th>
<th>Phone: +49 2203 9649-145</th>
<th>Fax: +49 2203 9649-334</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td>To:</td>
<td>igus® GmbH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 906123, 51127 Cologne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spicher Straße 1a, 51147 Cologne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germany</td>
</tr>
</tbody>
</table>

Please enter as much information as possible. If you prefer other measuring units, cross out the given unit and write your units next to it. Most applications questions can be answered with minimal data. Please call for further information (Phone: +49[0]2203/9649-145).

Dimensions:
- Shaft diameter (mm): ..
- Bearing length (mm): ..
- Bearing wall thickness (mm): ...
- Bearing load (N): ..
- Running speed (m/s): ..

Type of motion:
- rotating with .. U/min
- oscillating with .. degrees
- linear with ... mm stroke
- Rate (1/min): ...

Lubrication:
- dry
- oil
- grease
- water

What type of bearing are you currently using?
- iglidur®
- steel backed PTFE bearing
- oil filled sintered bronze bearing
- anti-friction bearing
- other

Which problem can iglidur® solve for you?
- dry running
- abrasion firmness
- edge pressing
- vibration dampening
- chemicals
- temperatures
- dirt, dust, ...
- cost reduction

Other load characteristics: ...

Ambient temperature (°C) ..

Surrounding media (e.g. acids, water, alkalines etc.):

Sliding surface (e.g. steel, plastic):

Average roughness Ra: ...

Housing material: ..

Intermittent rating: ..

Run time (s): ...

Down time (s): ...

Target service life: ..

All calculations also online with our expert system ➤ page 1132
Please enter as much information as possible. If you prefer other measuring units, cross out the given unit and write your units next to it. Most applications questions can be answered with minimal data. Please call for further information (Phone: +49 [0] 2203/96 49-1 45).

Rod ends type A	Average roughness Ra: ...
Rod ends type B	Target service life (hrs): ...
Pillow block	Current typ: ...
Spherical bearing	...
Flange bearing	Surrounding media (e.g. acids, water, alkalines):
Clevis Joints
Dimensional series	...
Thread pitch	...
Speed (m/s; rpm): ..	

Type of movements:
- rotating
- oscillating with .. degrees
- linear

Lubrication:
- dry
- oil
- grease
- water

| Shaft diameter (mm/Inch): ... |
| Bearing load (N): ... |
| Ambient temperature (°C): .. |
| Shaft material (z.B. steel, 303 stainless, plastic): |

Which problem can igubal® solve for you?
- dry running
- chemicals
- corrosion
- dirt
- vibration dampening
- dust
- cost-reduction
- weight

Other load characteristics: ..

Drawing:
Application: ..

Current guide system: ..

Orientation of system (1 = horizontal, 2 = lateral, 3 = vertical): ..

Number of bearings per rail/shaft: .. Number of rails/shafts: ...

Type of drive: ... Drive force [N]: ...

Average speed: ... Maximum speed: ...

Length of stroke: .. Expected service life: ...

Operating time: ..

Ambient temperature: ... Maximum temperature: ...

Surrounding medium: .. Lubrication: ...

Static load: .. Dynamic load: ...

For the following data, the drawings on next pages will help you!

Distance between bearings/carriages on a rail/shaft (wx): ..

Distance between rails/shafts (b): ..

Distance to centre of gravity in x-direction (Sx): ..

Distance to centre of gravity in y-direction (Sy): ..

Distance to centre of gravity in z-direction (Sz): ..

Distance to the drive force in y-direction (ay): ..

Distance to the drive force in z-d (az): ...

Please enter all the data you know and if possible make sketch.

All calculations also online with our expert system ➤ page 1139
drylin® | Analysis

Horizontal Orientation

Vertical Orientation

Lateral Orientation

igus® GmbH Germany | Phone +49 2203 9649-145 Fax -334 | info@igus.de | www.igus.eu

®